Gene conversion, linkage, and the evolution of multigene families.

نویسنده

  • T Nagylaki
چکیده

The evolution of the probabilities of genetic identity within and between the loci of a multigene family is investigated. Unbiased gene conversion, equal crossing over, random genetic drift, and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid, monoecious population mates at random. The linkage map is arbitrary, and the location dependence of the probabilities of identity is formulated exactly. The greatest of the rates of gene conversion, random drift, and mutation is epsilon much less than 1. For interchromosomal conversion, the equilibrium probabilities of identity are within order epsilon [i.e., O(epsilon)] of those in a simple model that has no location dependence and, at equilibrium, no linkage disequilibrium. At equilibrium, the linkage disequilibria are of O(epsilon); they are evaluated explicitly with an error of O(epsilon 2); they may be negative if symmetric heteroduplexes occur. The ultimate rate and pattern of convergence to equilibrium are within O(epsilon 2) and O(epsilon), respectively, of that of the same simple model. If linkage is loose (i.e., all the crossover rates greatly exceed epsilon, though they may still be much less than 1/2), the linkage disequilibria are reduced to O(epsilon) in a time of O(-ln epsilon). If intrachromosomal conversion is incorporated, the same results hold for loose linkage, except that, if the crossover rates are much less than 1/2, then the linkage disequilibria generally exceed those for pure interchromosomal conversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A model of duplicative transposition and gene conversion for repetitive DNA families.

A model of duplicative transposition and gene conversion for the evolution of repetitive DNA families was studied. In this model, transposition and conversion (both unbiased) are assumed to occur both within and between the genomes in a diploid cell, and any degree of linkage intensity is incorporated. The transition equations for allelic and nonallelic identity coefficients have been formulate...

متن کامل

A method for estimating the mutation, gene conversion and recombination parameters in small multigene families.

A simple two-locus gene conversion model is considered to investigate the amounts of DNA variation and linkage disequilibrium in small multigene families. The exact solutions for the expectations and variances of the amounts of variation within and between two loci are obtained. It is shown that gene conversion increases the amount of variation within each locus and decreases the amount of vari...

متن کامل

Evolution by the birth-and-death process in multigene families of the vertebrate immune system.

Concerted evolution is often invoked to explain the diversity and evolution of the multigene families of major histocompatibility complex (MHC) genes and immunoglobulin (Ig) genes. However, this hypothesis has been controversial because the member genes of these families from the same species are not necessarily more closely related to one another than to the genes from different species. To re...

متن کامل

Gene conversion and concerted evolution in bacterial genomes.

Gene conversion is defined as the non-reciprocal transfer of information between homologous sequences. Despite methodological problems to establish non-reciprocity, gene conversion has been demonstrated in a wide variety of bacteria. Besides examples of high-frequency reversion of mutations in repeated genes, gene conversion in bacterial genomes has been implicated in concerted evolution of mul...

متن کامل

The evolutionary rate of duplicated genes under concerted evolution.

The effect of directional selection on the fixation process of a single mutation that spreads in a multigene family by gene conversion is investigated. A simple two-locus model with two alleles, A and a, is first considered in a random-mating diploid population with size N. There are four haplotypes, AA, Aa, aA, and aa, and selection works on the number of alleles A in a diplod (i = 0, 1, 2, 3,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 120 1  شماره 

صفحات  -

تاریخ انتشار 1988